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We present the effective low-energy theory for interacting one-dimensional �1D� quantum wires subject to
Rashba spin-orbit coupling. Under a one-loop renormalization-group scheme including all allowed interaction
processes for not too weak Rashba coupling, we show that electron-electron backscattering is an irrelevant
perturbation. Therefore no gap arises and electronic transport is described by a modified Luttinger liquid
theory. As an application of the theory, we discuss the Ruderman-Kittel-Kasuya-Yosida �RKKY� interaction
between two magnetic impurities. Interactions are shown to induce a slower power-law decay of the RKKY
range function than the usual 1D noninteracting cos�2kFx� / �x� law. Moreover, in the noninteracting Rashba
wire, the spin-orbit coupling causes a twisted �anisotropic� range function with several different spatial oscil-
lation periods. In the interacting case we show that one special oscillation period leads to the slowest decay and
therefore dominates the Ruderman-Kittel-Kasuya-Yosida interaction for large separation.
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I. INTRODUCTION

Spin transport in one-dimensional �1D� quantum wires
continues to be a topic of much interest in solid-state and
nanoscale physics offering interesting fundamental questions
as well as technological applications.1 Of particular interest
to this field is the spintronic field effect transistor �spin-FET�
proposal by Datta and Das,2 where a gate-tunable Rashba
spin-orbit interaction �SOI� of strength � allows for a purely
electrical manipulation of the spin-dependent current. While
the Rashba SOI arises from a structural inversion
asymmetry3–5 of the two-dimensional electron gas �2DEG� in
semiconductor devices hosting the quantum wire, additional
sources for SOI can be present. In particular, for bulk inver-
sion asymmetric materials, the Dresselhaus SOI �of strength
�� should also be taken into account. By tuning the Rashba
SOI �via gate voltages� to the special point �=� the spin-
FET was predicted to show a remarkable insensitivity to
disorder,6 see also Ref. 7. On top of these two, additional
�though generally weaker� contributions may arise from the
electric confinement fields forming the quantum wire. In this
paper, we focus on the case of Rashba SOI and disregard all
other SOI terms. This limit can be realized experimentally by
applying sufficiently strong backgate voltages,8–11 which cre-
ate a large interfacial electric field and hence a significant
and tunable Rashba SOI coupling �. The model studied be-
low may also be relevant to 1D electron surface states of
self-assembled gold chains.12

The noninteracting theory of such a “Rashba quantum
wire” has been discussed in the literature13–18 and is summa-
rized in Sec. II below. We here discuss electron-electron �e-e�
interaction effects in the 1D limit where only the lowest
�spinful� band is occupied. The bandstructure at low-energy
scales is then characterized by two velocities19

vA,B = vF�1� ��, ���� � �4. �1�

These reduce to a single Fermi velocity vF in the absence of
Rashba SOI ��=0 for �=0� but they will be different for �

�0 reflecting the broken spin SU�2� invariance in a spin-
orbit-coupled system. The small-� dependence ���4 fol-
lows for the model below and has also been reported in Ref.
20. Therefore the velocity splitting �Eq. �1�� is typically
weak. While a similar velocity splitting also happens in a
magnetic Zeeman field �without SOI�,21 the underlying phys-
ics is different since time-reversal symmetry is not broken by
SOI.

The bandstructure of a single-channel quantum wire with
Rashba SOI should be obtained by taking into account at
least the lowest two �spinful� subbands since a restriction to
the lowest subband alone would eliminate spin
relaxation.15,22,23 The problem in this truncated Hilbert space
can be readily diagonalized and yields two pairs of energy
bands. When describing a single-channel quantum wire one
then keeps only the lower pair of these energy bands. We
mention in passing that band-structure effects in the presence
of both Rashba SOI and magnetic fields have also been
studied.24–28 In addition, the possibility of a spatial modula-
tion of the Rashba coupling was discussed29 but such phe-
nomena will not be further considered here. Finally disorder
effects were addressed in Refs. 30 and 31.

For 1D quantum wires it is well known that the inclusion
of e-e interactions leads to a breakdown of Fermi liquid
theory and often implies Luttinger liquid �LL� behavior. This
non-Fermi liquid state of matter has a number of interesting
features, including the phenomenon of spin-charge
separation.32 Motivated mainly by the question of how the
Rashba spin precession and Datta-Das oscillations in spin-
dependent transport are affected by e-e interactions, Rashba
SOI effects on electronic transport in interacting quantum
wires have been studied in recent papers.15,20,22,33–37 In ef-
fect, however, all those works only took e-e forward-
scattering processes into account. Because of the Rashba SOI
one obtains a modified LL phase with broken spin-charge
separation33,34 leading to a drastic influence on observables
such as the spectral function or the tunneling density of
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states. Moroz et al.33,34 argued that e-e backscattering pro-
cesses are irrelevant in the renormalization-group �RG� sense
and hence can be omitted in a low-energy theory. Unfortu-
nately their theory relies on an incorrect spin assignment of
the subbands15,22 which then invalidates several aspects of
their treatment of interaction processes.

The possibility that e-e backscattering processes become
relevant �in the RG sense� in a Rashba quantum wire was
raised in Ref. 38 where a spin gap was found under a weak-
coupling two-loop RG scheme. If valid, this result has im-
portant consequences for the physics of such systems and
would drive them into a spin-density-wave type state. To
establish the spin gap, Ref. 38 starts from a strict 1D single-
band model and assumes both � and the e-e interaction as
weak-coupling constants flowing under the RG. Our ap-
proach below is different in that we include the Rashba cou-
pling � from the outset in the single-particle sector, i.e., in a
nonperturbative manner. We then consider the one-loop RG
flow of all possible interaction couplings allowed by momen-
tum conservation �for not too small ��. This is an important
difference to the scheme of Ref. 38 since the Rashba SOI
eliminates certain interaction processes which become mo-
mentum nonconserving. This mechanism is captured by our
approach. The one-loop RG flow then turns out to be equiva-
lent to a Kosterlitz-Thouless flow and for the initial values
realized in this problem e-e backscattering processes are al-
ways irrelevant. Our conclusion is therefore that no spin gap
arises because of SOI and a modified LL picture is always
sufficient. We mention in passing that in the presence of a
magnetic field �which we do not consider� a spin gap can be
present because of spin-nonconserving e-e “Cooper” scatter-
ing processes;39,40 the effects of e-e forward scattering in
Rashba wires with magnetic field were studied as well.41–44

Below, we also provide estimates for the renormalized cou-
plings entering the modified LL theory, see Eq. �26� below.
When taking bare �instead of renormalized� couplings we
recover previous results.22 Note that the SOI in carbon
nanotubes45 or graphene ribbons46 leads to a similar yet dif-
ferent LL description. In particular, for �achiral� carbon
nanotubes, the leading SOI does not break spin-charge
separation.45 We here only discuss Rashba SOI effects in
semiconductor quantum wires in the absence of magnetic
fields.

We apply our formalism to a study of the Ruderman-
Kittel-Kasuya-Yosida �RKKY� interaction47,48 between two
spin-1/2 magnetic impurities �1,2 separated by a distance x.
The RKKY interaction is mediated by the conduction elec-
trons in the quantum wire which are exchange coupled �with
coupling J� to the impurity spins. In the absence of both the
e-e interaction and the SOI, one finds an isotropic exchange
�Heisenberg� Hamiltonian48

HRKKY = − J2Fex�x��1 · �2, Fex�x� �
cos�2kFx�

�x�
, �2�

where the 2kF-oscillatory RKKY range function Fex�x� is
specified for the 1D case. When the spin SU�2� symmetry is
broken by the SOI, spin precession sets in and the RKKY
interaction is generally of a more complicated �twisted�

form. For a noninteracting Rashba quantum wire it has in-
deed been established49–51 that the RKKY interaction be-
comes anisotropic and thus has a tensorial character. It can
always be decomposed into an exchange �scalar� part, a
Dzyaloshinsky-Moriya �DM�-type �vector� interaction, and
an Ising-type �traceless symmetric tensor� coupling. On the
other hand, in the presence of e-e interactions but without
SOI, the range function has been shown52 to exhibit a slow
power-law decay Fex�x��cos�2kFx��x�−� with an interaction-
dependent exponent ��1. The RKKY interaction in inter-
acting quantum wires with SOI has not been studied before.

For the benefit of the focused reader we briefly summa-
rize the main results of our analyis. The effective low-energy
theory of an interacting Rashba quantum wire is given in Eq.
�29�, with the velocities �30� and the dimensionless interac-
tion parameters �31�. Previous theories did not fully account
for the e-e backscattering, processes and the conspiracy of
these processes with the broken SU�2� invariance due to
spin-orbit effects leads to Ks�1 in Eq. �31�. This in turn
implies effects in the RKKY interaction of an interacting
Rashba wire. In particular, the power-law decay exponent in
an interacting Rashba wire, see Eq. �38�, depends explicitly
on both the interaction strength and on the Rashba coupling.

The structure of the remainder of this paper is as follows.
In Sec. II, we discuss the bandstructure. Interaction processes
and the one-loop RG scheme are discussed in Sec. III while
the LL description is provided in Sec. IV. The RKKY inter-
action mediated by an interacting Rashba quantum wire is
then studied in Sec. V. Finally we offer some conclusions in
Sec. VI. Technical details can be found in the Appendix.
Throughout the paper we use units where 	=1.

II. SINGLE-PARTICLE DESCRIPTION

We consider a quantum wire electrostatically confined in
the z direction within the 2DEG �xz plane� by a harmonic
potential Vc�z�=m
2z2 /2 where m is the effective mass. The
noninteracting problem is then defined by the single-particle
Hamiltonian3,13–15,17

Hsp =
1

2m
�px

2 + pz
2� + Vc�z� + ���zpx − �xpz� , �3�

where � is the Rashba coupling and the Pauli matrices �x,z
act in spin space. For �=0 the transverse problem is diagonal
in terms of the familiar 1D harmonic-oscillator eigenstates
�Hermite functions� Hn�z� with n=0,1 ,2 , . . . labeling the
subbands �channels�. Eigenstates of Eq. �3� have conserved
longitudinal momentum px=k and with the z direction as
spin-quantization axis, �z���=���� with �= ↑ , ↓ =�, the
�xpz term implies mixing of adjacent subbands with associ-
ated spin flips. Retaining only the lowest �n=0� subband
from the outset thus excludes spin relaxation. We follow Ref.
15 and keep the two lowest bands n=0 and n=1. The higher
subbands n�2 yield only tiny corrections which can in prin-
ciple be included as in Ref. 17. The resulting 44 matrix
representing Hsp in this truncated Hilbert space is readily
diagonalized and yields four energy bands. We choose the
Fermi energy such that only the lower two bands, labeled by
s=�, are occupied and arrive at a reduced two-band model
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where the quantum number s=� replaces the spin quantum
number. The dispersion relation is

Es�k� = 
 +
k2

2m
−��


2
+ s�k	2

+
m
�2

2
, �4�

with eigenfunctions 
eikx�k,s�z�. The resulting asymmetric
energy bands �Eq. �4�� are shown in Fig. 1. The transverse
spinors �in spin space� are given by

�k,+�z� = �i cos��+�k��H1�z�
sin��+�k��H0�z�

	 ,

�k,−�z� = � sin��−�k��H0�z�
i cos��−�k��H1�z�

	 , �5�

with k-dependent spin-rotation angles �we take 0��s�k�
�� /2�

�s�k� =
1

2
cot−1�− 2sk − 
/�

�2m

	 = �−s�− k� . �6�

As a result of subband mixing, the two spinor components of
�k,s�z� carry a different z dependence. They are therefore not
just the result of a SU�2� rotation. For �=0 we recover �s
=� /2 corresponding to the usual spin-up and -down eigen-
states with H0�z� as transverse wave function; the s=+�s=
−� component then describes the �= ↓ ��=↑� spin eigenstate.
However, for ��0, a peculiar implication of the Rashba SOI
follows. From Eq. �6� we have limk→�� �s�k�= �1�s�� /4
such that both s=� states have �approximately� spin �=↓
for k→� but �=↑ for k→−�; the product of spin and
chirality thus always approaches � sgn�k�=−1. Moreover,
under the time-reversal transformation T= i�yC with the
complex conjugation operator C, the two subbands are ex-
changed

e−ikx�−k,−s�z� = sT�eikx�k,s�z��, E−s�− k� = Es�k� . �7�

Time-reversal symmetry, preserved in the truncated descrip-
tion, makes this two-band model of a Rashba quantum wire
qualitatively different from Zeeman-spin-split models.21

In the next step, since we are interested in the low-energy
physics, we linearize the dispersion relation around the
Fermi points �kF

�A,B�, see Fig. 1, which results in two veloci-
ties vA and vB, see Eq. �1�. The linearization of the dispersion
relation of multiband quantum wires around the Fermi level
is known to be an excellent approximation for weak e-e
interactions.32 Explicit values for � in Eq. �1� can be derived
from Eq. �4� and we find ������4 for �→0 in accordance
with previous estimates.20 We mention that ��0.1 has been
estimated for typical geometries in Ref. 34. The transverse
spinors �ks�z�, see Eq. �5�, entering the low-energy descrip-
tion can be taken at k=�kF

�A,B� where the spin rotation angle
�Eq. �6�� only assumes one of the two values

�A = �+�kF
�A��, �B = �−�kF

�B�� . �8�

The electron field operator ��x ,z� for the linearized two-
band model with �=A ,B=+,− can then be expressed in
terms of 1D fermionic-field operators ��,r�x�, where r=R ,L
=+,− labels right and left movers

��x,z� = �
�,r=�

eirkF
���x�rkF

���,s=�r�z���,r�x� , �9�

with �k,s�z� specified in Eq. �5�. Note that in the left-moving
sector, band indices have been interchanged according to the
labeling in Fig. 1.

In this way, the noninteracting second-quantized Hamil-
tonian takes the standard form for two inequivalent species
of 1D massless Dirac fermions with different velocities

H0 = − i �
�,r=�

rv�� dx��,r
† �x��,r. �10�

The velocity difference implies the breaking of the spin
SU�2� symmetry, a direct consequence of SOI. For �=0 the
index � coincides with the spin quantum number � for left
movers and with −� for right movers and the above formu-
lation reduces to the usual Hamiltonian for a spinful single-
channel quantum wire.

III. INTERACTION EFFECTS

Let us now include e-e interactions in such a single-
channel disorder-free Rashba quantum wire. With the expan-
sion �9� and r= �x ,z� the second-quantized two-body Hamil-
tonian

HI =
1

2
� dr1dr2�

†�r1��†�r2�V�r1 − r2���r2���r1�

�11�

leads to 1D interaction processes. We here assume that the
e-e interaction potential V�r1−r2� is externally screened al-
lowing to describe the 1D interactions as effectively local.
Following standard arguments, for weak e-e interactions, go-
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FIG. 1. �Color online� Schematic band structure �Eq. �4�� of a
typical 1D Rashba quantum wire. The red/blue �right/left solid�
curves show the s=� bands and the dotted curves indicate the next
subband �the Fermi energy �F is assumed below that band�. For the
low-energy description we linearize the dispersion. It is notationally
convenient to introduce bands A �solid lines� and B �dashed lines�.
Green and black arrows indicate the respective spin amplitudes �ex-
aggerated�. The resulting Fermi momenta are �kF

�A,B� with Fermi
velocities vA,B.
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ing beyond this approximation at most leads to irrelevant
corrections.53 We then obtain the local 1D interaction
Hamiltonian54

HI =
1

2 �
�i,ri�

V�i,ri�� dx��1,r1

† ��2,r2

† ��3,r3
��4,r4

, �12�

where the summation runs over all quantum numbers
�1 , . . . ,�4 and r1 , . . . ,r4 subject to momentum conservation

r1kF
��1� + r2kF

��2� = r3kF
��3� + r4kF

��4�. �13�

With the momentum transfer q=r1kF
��1�−r4kF

��4� and the par-
tial Fourier transform

Ṽ�q;z� =� dxe−iqxV�x,z� �14�

of the interaction potential, the interaction matrix elements in
Eq. �12� are given by

V�i,ri�
=� dz1dz2Ṽ�q;z1 − z2� ��r1k

F
��1�,�1r1

†
· �r4k

F
��4�,�4r4

��z1�

 ��r2k
F
��2�,�2r2

†
· �r3k

F
��3�,�3r3

��z2� . �15�

Since the Rashba SOI produces a splitting of the Fermi mo-
menta for the two bands, �kF

�A�−kF
�B���2�m, the condition

�13� eliminates one important interaction process available
for �=0, namely, interband backscattering �see below�. This
is a distinct SOI effect besides the broken spin SU�2� invari-
ance. Obtaining the complete “g-ology” classification32 of all
possible interaction processes allowed for ��0 is then a
straightforward exercise. The corresponding values of the in-
teraction matrix elements are generally difficult to evaluate
explicitly but in the most important case of a thin wire

d�
1

�m

, �16�

where d is the screening length �representing, e.g., the dis-
tance to a backgate�, analytical expressions can be
obtained.55 To simplify the analysis and allow for analytical
progress, we therefore employ the thin-wire approximation
�Eq. �16�� in what follows. In that case we can neglect the z
dependence in Eq. �14�. Going beyond this approximation
would only imply slightly modified values for the e-e inter-
action couplings used below. Using the identity

� dz��rkF
���,�r

† · �r�kF
����,��r���z�

= �����rr� + cos��A − �B���,−���r,−r�, �17�

where the angles �A,B were specified in Eq. �8�, only two
different values W0 and W1 for the matrix elements in Eq.
�15� emerge. These nonzero matrix elements are

V�r,��r�,��r�,�r � W0 = Ṽ�q = 0� ,

V�r,��r�,−��−r�,−�−r � W1 = cos2��A − �B�Ṽ�q = kF
�A� + kF

�B�� .

�18�

We then introduce 1D chiral fermion densities
��r�x�¬��r

† ��r:, where the colons indicate normal ordering.
The interacting 1D Hamiltonian is H=H0+HI with Eq. �10�
and

HI =
1

2 �
���,rr�

� dx��g2����,�� + g2���,−����r,−r�

+ �g4����,�� + g4���,−����r,r����r���r�

+
gf

2 �
�r
� dx��r

† ��,−r
† �−�r�−�,−r. �19�

The e-e interaction couplings are denoted in analogy to the
standard g-ology, whereby the g4 �g2� processes describe for-
ward scattering of 1D fermions with equal �opposite� chiral-
ity r=R , L=+,− and the labels �, �, and f denote intraband,
interband, and band flip processes, respectively. Since the
bands �=A , B=+,− are inequivalent, we keep track of the
band index in the intraband couplings. The gf term corre-
sponds to intraband backscattering with band flip. The inter-
band backscattering without band flip is strongly suppressed
since it does not conserve total momentum56 and is neglected
in the following. For �=0 the g4,�/� couplings coincide with
the usual ones32 for spinful electrons while gf reduces to g1�

and g2,�/�→g2,�/� due to our exchange of band indices in the
left-moving sector. According to Eq. �18� the bare values of
these coupling constants are

g4�� = g4� = g2�� = W0,

g2� = W0 − W1, gf = W1. �20�

The equality of the intraband coupling constants for the two
bands is a consequence of the thin-wire approximation which
also eliminates certain exchange matrix elements.

The Hamiltonian H0+HI then corresponds to a specific
realization of a general asymmetric two-band model where
the one-loop RG equations are known.54,57 Using RG invari-
ants we arrive after some algebra at the two-dimensional
Kosterlitz-Thouless RG flow equations

dḡ2

dl
= − ḡf

2,
dḡf

dl
= − ḡfḡ2, �21�

for the rescaled couplings

ḡ2 =
g2�A

2�vA
+

g2�B

2�vB
−

g2�

�vF
,

ḡf =�1 + �

2

gf

�vF
, �22�

where we use the dimensionless constant

� =
vF

2

vAvB
=

1

1 − �2 � 1. �23�

As usual, the g4 couplings do not contribute to the one-loop
RG equations. The initial values of the couplings can be read
off from Eq. �20�
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ḡ2�l = 0� =
�� − 1�W0 + W1

�vF
,

ḡf�l = 0� =�1 + �

2

W1

�vF
. �24�

The solution of Eq. �21� is textbook material32 and ḡf is
known to be marginally irrelevant for all initial conditions
with �ḡf�0��� ḡ2�0�. Using Eqs. �18� and �24�, this implies
with ��1+�2 the condition

Ṽ�0��
1

4
cos2��A − �B�Ṽ�kF

�A� + kF
�B�� , �25�

which is satisfied for all physically relevant repulsive e-e
interaction potentials. As a consequence intraband back-
scattering processes with band flip, described by the coupling
ḡf, are always marginally irrelevant, i.e., they flow to zero
coupling as the energy scale is reduced, ḡf

�= ḡf�l→��=0.
Therefore no gap arises and a modified LL model is the
appropriate low-energy theory. We mention in passing that
even if we neglect the velocity difference in Eq. �1�, no spin
gap is expected in a Rashba wire, i.e., the broken SU�2�
invariance in our model is not required to establish the ab-
sence of a gap.

The above RG procedure also allows us to extract renor-
malized couplings entering the low-energy LL description.
The fixed-point value ḡ2

�= ḡ2�l→�� now depends on the
Rashba SOI through � in Eq. �23�. With the interaction ma-
trix elements W0,1 in Eq. �18�, it is given by

ḡ2
� =

���� − 1�W0 + W1�2 − �� + 1�W1
2/2

�vF
. �26�

For �=0 we have �=1 and therefore ḡ2
�=0. The Rashba SOI

produces the nonzero fixed-point value �26� reflecting the
broken SU�2� symmetry.

IV. LUTTINGER LIQUID DESCRIPTION

In this section, we describe the resulting effective low-
energy LL theory of an interacting single-channel Rashba
wire. Employing Abelian bosonization32 we introduce a bo-
son field and its conjugate momentum for each band �
=A , B=+,−. It is useful to switch to symmetric �“charge”�,
�c�x� and �c�x�=−�x�c�x�, and antisymmetric �“spin” for
�=0�, �s�x� and �s�x�=−�x�s, linear combinations of these
fields and their momenta. The dual fields � and � then allow
to express the electron operator from Eq. �9� and the
“bosonization dictionary,”

��x,z� = �
�,r
�rkF

���,�r�z�
��r

�2�a
eirkF

���x+i��/2�r�c+�c+�r�s+��s�,

�27�

where a is a small cutoff length and ��r are the standard
Klein factors.32,52,58 �To recover the conventional expression
for �=0, due to our convention for the band indices in the
left-moving sector, one should replace �s ,�s→−�s ,−�s.�

Using the identity �17� we can now express the 1D charge
and spin densities

��x� =� dz�†�, S�x� =� dz�†�

2
� , �28�

in bosonized form. The �somewhat lengthy� result can be
found in the Appendix.

The low-energy Hamiltonian is then taken with the fixed-
point values for the interaction constants, i.e., backscattering
processes are disregarded and only appear via the renormal-
ized value of ḡ2

� in Eq. �26�. Following standard steps, the
kinetic term H0 and the forward-scattering processes then
lead to the exactly solvable Gaussian-field theory of a modi-
fied �extended� Luttinger liquid

H = �
j=c,s

v j

2
� dx�Kj� j

2 +
1

Kj
��x� j�2	

+ v�� dx�K��c�s +
1

K�

��x�c���x�s�	 . �29�

Using the notations ḡ4=W0 /�vF and

y� =
g2�A

� − g2�B
�

4�vF
,

y� =
g2�A

� + g2�B
� � 2g2�

�

4�vF
,

where explicit �but lengthy� expressions for the fixed-point
values g2�A/B

� and g2�
� can be straightforwardly obtained from

Eqs. �22� and �26�, the renormalized velocities appearing in
Eq. �29� are

vc = vF
��1 + ḡ4�2 − y+

2 � vF��1 +
W0

�vF
	2

− �2W0 − W1

2�vF
	2

,

vs = vF
�1 − y−

2 � vF,

v� = vF
��2 − y�

2 � vF��1 − � W1

4�vF
	2

. �30�

In the respective second equalities we have specified the
leading terms in ����1, since the SOI-induced relative-
velocity asymmetry � is small even for rather large �, see
Eq. �1�. The corrections to the quoted expressions are of
O��2� and are negligible in practice. It is noteworthy that the
spin velocity vs is not renormalized for a Rashba wire, al-
though it is well known that vs will be renormalized due to
W1 for �=0.32 This difference can be traced to our thin-wire
approximation �Eq. �16��. When releasing this approximation
there will be a renormalization in general. Finally the dimen-
sionless LL interaction parameters in Eq. �29� are given by

Kc =�1 + ḡ4 − y+

1 + ḡ4 + y+

�� 2�vF + W1

2�vF + 4W0 − W1
,

Ks =�1 − y−

1 + y−
� 1 −

�W0W1

�2�vF

��� ,
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K� =�� − y�
� + y�

��4�vF + W1

4�vF − W1
, �31�

where the second equalities again hold up to contributions of
O��2�. When the 2kF component of the interaction potential
W1=0, see Eq. �18�, we obtain Ks=K�=1 and thus recover
the theory of Ref. 22. The broken spin SU�2� symmetry is
reflected in Ks�1 when both ��0 and W1�0.

Since we arrived at a Gaussian field theory, Eq. �29�, all
low-energy correlation functions can now be computed ana-
lytically without further approximation. The linear algebra
problem needed for this diagonalization is discussed in the
Appendix.

V. RKKY INTERACTION

Following our discussion in Sec. I, we now investigate the
combined effects of the Rashba SOI and the e-e interaction
on the RKKY range function. We include the exchange cou-
pling H�=J�i=1,2�i ·S�xi� of the 1D conduction-electron spin
density S�x� to localized spin-1/2 magnetic impurities sepa-
rated by x=x1−x2. The RKKY interaction HRKKY, describing
spin-spin interactions between the two magnetic impurities,
is then obtained by perturbation theory in J.48 In the simplest
1D case �no SOI and no interactions� it is given by Eq. �2�.
In the general case one can always express it in the form

HRKKY = − J2�
a,b

Fab�x� 1
a 2

b, �32�

with the range function now appearing as a tensor ��
=1 /kBT for temperature T�

Fab�x� = �
0

�

d!"ab�x,!� . �33�

Here, the imaginary-time �!� spin-spin correlation function
appears

"ab�x,!� = �Sa�x,!�Sb�0,0�� . �34�

The 1D spin densities Sa�x� �with a=x ,y ,z� were defined in
Eq. �28� and their bosonized expression is given in the Ap-
pendix, which then allows to compute the correlation func-
tions �Eq. �34�� using the unperturbed �J=0� LL model �Eq.
�29��. The range function thus effectively coincides with the
static space-dependent spin-susceptibility tensor. When spin
SU�2� symmetry is realized, "ab�x�=�abFex�x�, and one re-
covers Eq. �2�, but in general this tensor is not diagonal. For
a LL without Rashba SOI, Fex�x� is as in Eq. �2� but with a
slow power-law decay.52

If spin SU�2� symmetry is broken, general arguments im-
ply that Eq. �32� can be decomposed into three terms,
namely, �i� an isotropic exchange scalar coupling, �ii� a DM
vector term, and �iii� an Ising-type interaction

HRKKY/J2 = − Fex�x��1 · �2 − FDM�x� · ��1  �2�

− �
a,b

FIsing
ab �x� 1

a 2
b, �35�

where Fex�x�= 1
3�aFaa�x�. The DM vector has the compo-

nents

FDM
c �x� =

1

2�
a,b
�cabFab�x� ,

and the Ising-type tensor

FIsing
ab �x� =

1

2�Fab + Fba −
2

3�
c

Fcc�ab	�x�

is symmetric and traceless. For a 1D noninteracting quantum
wire with Rashba SOI, the “twisted” RKKY Hamiltonian
�35� has recently been discussed49–51 and all range functions
appearing in Eq. �35� were shown to decay ��x�−1, as ex-
pected for a noninteracting system. Moreover, it has been
emphasized50 that there are different spatial oscillation peri-
ods reflecting the presence of different Fermi momenta kF

�A,B�

in a Rashba quantum wire.
Let us then consider the extended LL model �Eq. �29��

which includes the effects of both the e-e interaction and the
Rashba SOI. The correlation functions �Eq. �34�� obey
"ba�x ,!�="ab�−x ,−!� and since we find "xz="yz=0 the an-
isotropy acts only in the xy plane. The four nonzero correla-
tors are specified in the Appendix, where only the long-
ranged 2kF oscillatory terms are kept. These are the relevant
correlations determining the RKKY interaction in the inter-
acting quantum wire. We note that in the noninteracting case,
there is also a “slow” oscillatory component corresponding
to a contribution to the RKKY range function �cos��kF

�A�

−kF
�B��x� / �x�. Remarkably, we find that this 1 /x decay law is

not changed by interactions. However, we will show below
that interactions cause a slower decay of certain “fast” oscil-
latory terms, e.g., the contribution �cos�2kF

�B�x�. We there-
fore do not further discuss the slow oscillatory terms in what
follows.

Collecting everything, we find the various range functions
in Eq. �35� for the interacting case,

Fex�x� =
1

6�
�

��1 + cos2�2����cos�2kF
���x�F�

�1��x�

+ cos2��A + �B�cos�kF
�A� + kF

�B��x�F�
�2��x�� ,

FDM�x� = êz�
�

�

2
cos�2���sin�2kF

���x�F�
�1��x� ,

FIsing
ab �x� = �1

2�
�

G�
a�x� − Fex�x���ab, �36�

with the auxiliary vector
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G� = � cos�2kF
���x�F�

�1��x�
cos2�2���cos�2kF

���x�F�
�1��x�

cos2��A + �B�cos��kF
�A� + kF

�B��x�F�
�2��x�

� .

The functions F�
�1,2��x� follow by integration over ! from

F̃�
�1,2��x ,!�, see Eqs. �A1� and �A2� in the Appendix. This

implies the respective decay laws for a� �x��vF /kBT

F�
�1��x� � �a/x�−1+Kc+Ks+2��1−Kc/K�

2��v�K�/vc+vs�,

F�
�2��x� � �a/x�−1+Kc+1/Ks. �37�

All those exponents approach unity in the noninteracting
limit in accordance with previous results.49,50 Moreover, in
the absence of SOI ��=�=0�, Eq. �37� reproduces the known
�x�−Kc decay law for the RKKY interaction in a conventional
LL.52

Since Ks�1 for an interacting Rashba wire with ��0,
see Eq. �31�, we conclude that F�

�1� with �=B, corresponding
to the slower velocity vB=vF�1−��, leads to the slowest de-
cay of the RKKY interaction. For large distance x the RKKY
interaction is therefore dominated by the 2kF

�B� oscillatory
part and all range functions decay ��x�−�B with the exponent

�B = Kc + Ks − 1 − 2�1 −
Kc

K�
2	 v�K�

vc + vs
� 1. �38�

This exponent depends both on the e-e interaction potential
and on the Rashba coupling �. The latter dependence also
implies that electric fields are able to change the power-law
decay of the RKKY interaction in a Rashba wire. The DM
vector coupling also illustrates that the SOI is able to effec-
tively induce off-diagonal couplings in spin space, reminis-
cent of spin-precession effects. Also these RKKY couplings
are 2kF

�B� oscillatory and show a power-law decay with the
exponent �38�.

VI. DISCUSSION

In this paper we have presented a careful derivation of the
low-energy Hamiltonian of a homogeneous 1D quantum
wire with not too weak Rashba spin-orbit interactions. We
have studied the simplest case �no magnetic field, no disor-
der, and single-channel limit� and in particular analyzed the
possibility for a spin gap to occur because of electron-
electron backscattering processes. The initial values for the
coupling constants entering the one-loop RG equations were
determined and, for rather general conditions, they are such
that backscattering is marginally irrelevant and no spin gap
opens. The resulting low-energy theory is a modified Lut-
tinger liquid, Eq. �29�, which is a Gaussian field theory for-
mulated in terms of the boson fields �c�x� and �s�x� �and
their dual fields�. In this state spin-charge separation is vio-
lated due to the Rashba coupling but the theory still admits
exact results for essentially all low-energy correlation func-
tions.

Based on our bosonized expressions for the 1D charge
and spin density, the frequency dependence of various sus-

ceptibilities of interest, e.g., charge- or spin-density-wave
correlations, can then be computed. As the calculation
closely mirrors the one in Refs. 34 and 35 we do not repeat
it here. One can then infer a “phase diagram” from the study
of the dominant susceptibilities. According to our calcula-
tions, due to a conspiracy of the Rashba SOI and the e-e
interaction, spin-density-wave correlations in the xy plane
are always dominant for repulsive interactions.

We have studied the RKKY interaction between two mag-
netic impurities in such an interacting 1D Rashba quantum
wire. On general grounds the RKKY interaction can be de-
composed into an exchange term, a DM vector term, and a
traceless symmetric tensor interaction. For a noninteracting
wire the corresponding three range functions have several
spatial oscillation periods with a common overall decay
��x�−1. We have shown that interactions modify this picture.
The dominant contribution �characterized by the slowest
power-law decay� to the RKKY range function is now 2kF

�B�

oscillatory for all three terms with the same exponent �B
�1, see Eq. �38�. This exponent depends both on the inter-
action strength and on the Rashba coupling. This raises the
intriguing possibility to tune the power-law exponent �B
governing the RKKY interaction by an electric field since �
is tunable via a backgate voltage. We stress again that inter-
actions imply that a single spatial oscillation period �wave-
length � /kF

�B�� becomes dominant, in contrast to the nonin-
teracting situation where several competing wavelengths are
expected.

The above formulation also holds promise for future cal-
culations of spin transport in the presence of both interac-
tions and Rashba spin-orbit couplings and possibly with dis-
order. Under a perturbative treatment of impurity
backscattering, otherwise exact statements are possible even
out of equilibrium. We hope that our work will motivate
further studies along this line.
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APPENDIX: BOSONIZATION FOR THE EXTENDED
LUTTINGER LIQUID

In this Appendix, we provide some technical details re-
lated to the evaluation of the spin-spin correlation function
under the extended Luttinger theory �Eq. �29��. The exact
calculation of such correlations is possible within the
bosonization framework and requires a diagonalization of
Eq. �29�.

The one-dimensional �1D� charge and spin densities �Eq.
�28�� can be written as the sum of slow and fast �oscillatory�
contributions. Using Eq. �17�, the bosonized form for the 1D
charge density is

��x� =� 2

�
�x�c −

2i

�a
�AR�AL cos��A − �B�sin��kF

�A� + kF
�B��x

+ �2��c�cos��2��s� .

Similarly, using the identity
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� dz��rkF
���,�r

†
��r�kF

����,��r���z� = �r,r�� cos��A − �B���,−��

− i�r cos��A + �B���,−��

�r cos�2�����,��
� + �r,−r�� ��,��

− i�r cos�2�����,��

�r cos��A + �B���,−��
� ,

the 1D spin-density vector has the components

Sx�x� = − i
�AR�BR

�a
cos��A − �B�cos��kF

�A� − kF
�B��x

+ �2��s�sin��2��s� − i
�AR�AL

�a
cos��kF

�A� + kF
�B��x

+ �2��c�sin��kF
�A� − kF

�B��x + �2��s� ,

Sy�x� = i
�AR�BR

�a
cos��A + �B�sin��kF

�A� − kF
�B��x

+ �2��s�sin��2��s� − i �
�=A,B=+,−

�
��R��L

2�a
cos�2���

cos�2kF
���x + �2���c + ��s�� ,

Sz�x� =
1

�8�
��cos 2�A + cos 2�B��x�s

+ �cos 2�A − cos 2�B��x�c� − i
�AR�BL

�a

 cos��A + �B�cos��kF
�A� + kF

�B��x

+ �2��c�sin��2��s� .

Note that while �x�c is proportional to the �slow part of the�
charge density, the �slow� spin density is determined by both
c and s sectors.

Next we specify the nonzero components of the
imaginary-time spin-spin correlation function "ab�x ,!�, see
Eq. �34�. Using the above bosonized expressions, some alge-
bra yields

"xx�x,!� = �
�

cos�2kF
���x�

2�2�a�2 F̃�
�1��x,!� ,

"yy�x,!� = �
�

cos2�2���cos�2kF
���x�

2�2�a�2 F̃�
�1��x,!� ,

"zz�x,!� = �
�r

cos2��A + �B�
2�2�a�2 cos��kF

�A� + kF
�B��x�F̃�

�2��x,!� ,

and

"xy�x,!� = �
�

� cos�2���sin�2kF
���x�

2�2�a�2 F̃�
�1��x,!� .

Here the functions F̃�=A,B=+,−
�1,2� �x ,!� are given by

F̃�
�1��x,!� = �

j=1,2
��uj

�a
sin���uj! − ix�

�uj
	�−�#�c�c

�j� +#�s�s

�j� +2�#�c�s

�j� �

and

F̃�
�2��x,!� = �

j=1,2
��uj

�a
sin���uj! − ix�

�uj
	�−�#�c�c

�j� +#�s�s

�j� �

� sin���uj!+ix�
�uj

�
sin���uj!−ix�

�uj
��

�#�c�s

�j�

.

The dimensionless numbers #�j� appearing in the exponents
follow from the straightforward �but lengthy� diagonalization
of the extended Luttinger liquid �LL� Hamiltonian �29�,
where the uj are the velocities of the corresponding normal
modes. With the velocities �30� and the dimensionless Lut-
tinger parameters �31�, the result of this linear algebra prob-
lem can be written as follows. The normal-mode velocities
u1 and u2 are

2uj=1,2
2 = vc

2 + vs
2 + 2v�

2 − �− 1� j��vc
2 − vs

2�2 + 4v�
2

�vcvs� K�
2

KcKs
+

KcKs

K�
2 	 + vc

2 + vs
2��1/2

,

and the exponents #�j=1,2� appearing in F̃�
�1,2��x ,!� are given

by

#�c�c

�j� =
�− 1� jKcvc

uj�u1
2 − u2

2�
�vs

2 − uj
2 −

K�
2v�

2vs

KcKsvc
	 ,

#�s�s

�j� =
�− 1� jKsvs

uj�u1
2 − u2

2�
�vc

2 − uj
2 −

K�
2v�

2vc

KcKsvs
	 ,

#�c�s

�j� =
�− 1� jK�v�
uj�u1

2 − u2
2� �v�

2 − uj
2 −

KcKsvsvc

K�
2 	 ,

#�s�s

�j� =
�− 1� jvs

Ksuj�u1
2 − u2

2�
�vc

2 − uj
2 −

KcKsv�
2vc

K�
2vs

	 ,

#�c�s

�j� =
�− 1� jv�
u1

2 − u2
2 �K�

Ks
vs +

Kc

K�

vc	 .

Since ����1, we now employ the simplified expressions
for the velocities in Eq. �30� and the Luttinger liquid param-
eters in Eq. �31�, which are valid up to O��2� corrections. In
the interacting case, this yields for the normal-mode veloci-
ties simply u1=vc and u2=vs. �In the noninteracting limit, the
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above equation instead yields u1=vA and u2=vB, see Eq.
�1�.� Moreover, the exponents #�j� simplify to

#�c�c

�1� = Kc, #�c�c

�2� = #�s�s

�1� = #�s�s

�1� = 0,

#�s�s

�2� = Ks, #�s�s

�2� = 1/Ks,

#�c�s

�1� =
v�

vc
2 − vs

2 �K�vc + Kcvs/K�� ,

#�c�s

�2� = −
v�

vc
2 − vs

2 �K�vs + Kcvc/K�� ,

#�c�s

�1,2� = � #�c�s

�2� .

Collecting everything and taking the zero-temperature limit

the functions F̃�=�
�1,2��x ,!� take the form

F̃�
�1��x,!� = �vc! − ix

a
�−Kc−2�v�

K�vc+Kcvs/K�

vc
2−vs

2

�vs! − ix

a
�−Ks+2�v�

K�vs+Kcvc/K�

vc
2−vs

2

, �A1�

and

F̃�
�2��x,!� = �vc! − ix

a
�−Kc�vs! − ix

a
�−1/Ks

� �vs! − ix��vc! + ix�
�vs! + ix��vc! − ix��−�

v��K�vs+Kcvc/K��

vc
2−vs

2

. �A2�

The known form of the spin-spin correlations in a LL with
�=0 is recovered by putting v���=0.
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